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Abstract—A three component vector finite element formulation

to model the propagation characteristics of partially filled, axially

magnetized, gyromagnetic waveguides is described. Covariant-

projection elements have been used to avoid spurious modes and

periodic boundary conditions have been implemented to improve

numerical efficiency. The classic quadratic functional derived

from the vector, curlcurl, magnetic field equation is suited to
evaluating the cut-off planes of gyrotropic waveguides. A known
field transformation is used to reformulate the functional into

a form convenient for calculating phase constants. Cut-off and
phase constant solutions are presented for both fully and partially
filled, longitudinally magnetized, ferrite loaded waveguides.

I. INTRODUCTION

A N UNDERSTANDING of cut-off conditions, phase con-

stants and mode nomenclature are necessary in wave-

guide design problems, Boundary value problems associ-

ated with gyromagnetic waveguides often produce intractable

characteristic equations describing complex modal behaviour

[1]–[4]. An alternative approach is to formulate such problems

in terms of a finite element procedure [5]–[7]. Inhomogeneous

gyromagnetic waveguide cross sections are solved here using

the finite element method with covariant-projection elements

to eliminate spurious modes [8], [14]. The particular case

treated is longitudinally magnetized ferrite structures. This

class of boundmy problem is of interest in the area of ferrite

phase shifters, resonators, circulators and tunable filters [9].

The finite element analysis of a vector field problem is

usually based on either an axial (13Z, Hz) formulation or on

a three component (~ or ~) field formulation. Gibson and

Helszajn [6] have used an axial component formulation to

study the characteristics of ferrite filled elliptical waveguides.

One difficulty with axial component formulations is that

for inhomogeneous geometries it is not easy to impose the

boundary conditions between media interfaces [10]. The three

component field formulation requires no modification for

media interfaces and so can be applied to arbitrary inhomo-

geneous geometries. Such a formulation was first proposed

by Konrad [5] and since then it has been widely used. Its
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eigensolution provides the three component vector field as the

eigenvector for each modal eigenvalue frequency. Recently,

this formulation has been used with edge elements to avoid

spurious modes in the study of ferrite cavities [11]. By setting

the phase constant to zero the cut-off planes of gyromagnetic

structures are readily evaluated. Cut-off curves are presented

for the first few modes of longitudinally magnetized, circular

waveguides using this approach. Both fully and partially filled

cross sections are examined. For phase constant evaluation

however this approach is inefficient as the phase constant is a

prerequisite to the analysis.

A direct method of calculating phase constants from this

functional has been described in the literature [12]. It requires

the fields to be transformed such that the phase constant

squared becomes the eigenvalue. The Herrnitian tensors of the

medium must be reducible into transverse and axial compo-

nents. Longitudinally magnetized structures satisfy this prereq-

uisite. Spurious mode free eigensolutions of phase constants

and fields are obtained by using this transformed functional

with covariant-projection elements. Finite element phase con-

stant calculations are made for both partially and completely

filled longitudinally magnetized circular ferrite waveguides.

All finite element calculations are in good agreement with

previously published results [2].

The circular geometries treated here are modelled using

covariant-projection elements. These are rectangular elements

with curvilinear sides, which have a special function space de-

signed to avoid spurious modes [8], [14]. The shape functions

used within these elements are defined so that the irrotational

solutions are modelled correctly. Numerical efficiency has

been improved for the axisymmetric geometries treated by

introducing periodic boundary conditions and discretizing one

half of the geometry only.

II. FORMULATION FOR THE CUT-OFT PLANE

In longitudinally-magnetized ferrite structures, the static

magnetic field is applied in the direction of electromagnetic

wave propagation. In the following analysis this coincides

with the z-axis of the Cartesian co-ordinate system. The

propagation characteristics of the waveguide are dependent

on the applied magnetic field for example, electromagnetic

waves with clockwise and anti-clockwise circular-polarization

display different phase velocities along the waveguide. Hence

the ferrite media is gyromagnetic and can be characterized by
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a scalar relative permittivity (~f ) and a tensor permeability

(~) of the form

From Maxwell’s equations it can be shown that the modes

in axially magnetized gyromagnetic media always contain

coupled Ez and H, field components [2] and so a vector

analysis is necessary.

The time-harmonic magnetic field within the waveguide

satisfies the vector wave equation

where k. is the wavenumber of free space. It is assumed here

that the waveguide is uniform in the z direction, hence all

field components have a z-dependence of e–~z where ~ is

the propagation constant. In waveguides containing ferrite the

cross-section of the guide maybe inhomogeneous with both ef

and fir functions of position. The functional whose stationary

point corresponds to the solution of (2) is

s$’(77) = {v x 77*.$% x E– L@” - ,iirH}
s

/
.dS– {~” X $l(V x~)}. fidC (3)

c

where ii is the outward normal around the closed curve C

surrounding the waveguide region S. This functional was

derived by Konrad [5] for applications with anisotropic media

which can be described by Hermitian tensors. Regardless of

the direction of the applied field, the gyrotropic media of (1)

always falls into this category. The waveguide boundary is

usually either an electric or a magnetic wall or a combination

of both. With any of these boundary conditions the contribu-

tion of the line integral term in (3) around the waveguide

boundary C is zero, so this term is often ignored in the

formulation.

For two-dimensional problems the known z-dependence of

the fields is substituted into (3), hence there are two un-

known parameters associated with each mode: the propagation

constant T = j~ and the free-space wavenumber k.. In

this formulation the value of ,8 is specified in preference

to the wavenumber /c. so that a standard eigenvalue matrix

equation is obtained. The usual finite element procedure of
approximating the field using a set of locally defined shape

functions and a set of unknown field coefficients can be used to

discretize the functional in (3), [13]. Ignoring the line integral

term in (3) and using (1), the discretized functional gives the

following matrix equation

(4)

where the submatrices are defined as

H; AttHt = J{C;lIV, X ~,1’ +b2e;1[~,12}dS
s

/
H; B,,H, = {/-LmlH.12+ AWL1’

s

(5a)

(5b)

(5C)

+jK(H;H. – H;HV)} dS

(5d)

H: B2ZHZ =
/

p.zlHz12dS
s

(5e)

Here the known z-dependence of the field has been used to

give V x = Vt x –j~2 and the relative phase difference

between the transverse (Ht) and axial (Hz) magnetic field

coefficients is chosen so that the matrix [A] is real symmetric.

For ferrites the matrix [B] is Hermitian because of the tensor

properties of j,. The solution is obtained by finding the

stationary point of the functional. This corresponds to solving

the generalized eigenvalue matrix equation

By setting the phase constant (~) to zero this formulation

becomes ideally suited to evaluating the cut-off planes of

gyromagnetic waveguides. The eigenvalue with the lowest

value corresponds to the cut-off wavenumber of the dominant

mode. The solutions with a cut-off wavenumber of zero were

ignored. These solutions correspond to the irrotational fields

which are numerical solutions to (6). All eigensolutions with

non-zero eigenvalues represent physical modal solutions.

III. FORMULATION FOR THE PHASE CONSTANT

In order to study the dependence of the phase constant/3 of

any particular mode on the direct magnetic field, it is necessary

to have a formulation where the wavenumber k. is specified

and the phase constant is calculated. A simple method for

transforming the functional has been described by Cendes and
Lee [12]. Their application involved lossless scalar material

properties. It can also be used with tensors of the form of (1)

which can be split into a transverse and axial part

fir = Ikt+ Pzzi (7)

Assuming that V x = Vt x –j~~ and splitting the magnetic

field into a transverse and an axial part as before, the functional

in (3) becomes

JF(n) = {e;lp7t x Et/’ – k; [77;“ JttHt+ &,LLzzHz]

s

+ @VtHz +jo~t/2}dS (8)
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Once more the line integral term is taken to be zero because of

the boundary conditions. To obtain aformulation in terms of

the phase constant, the field variables can be transformed using

Zt = pzt (9a)

7-lz.2 =jHzi (9b)

The resulting functional is

+ B7+7WZ +ztlz – /k:l-t;#zzHz]}M(10)

The advantage of this functional is that it gives a generalized

eigenvalue matrix problem with the phase constant as the

eigenvalue instead of the wavenumber as was used in (3).

The discretization of (10) gives a matrix equation

F’(n) = [H; -’HW:1”[:.1
[Dtt Dtz

+ p2[H; –jH;] . p ~
tz ~~ 1[ 1j%“1)

where on expansion the following products are defined

H; DttHt =
/

~;11~t12dS (12b)

H; DtzHz = J$~~:.VtHz dS (12C)

H; DZZHZ = J+1[VtHz12 – lc&u..l H.12 dS (12d)

As in (4), the vector [Ht jH2] represents the unknown

magnetic field coefficients. The matrices [C] and [D] are

Hermitian and real symmetric respectively. The stationary

point of this matrix equation gives

R :1[:.1=-’2[%%1[:.1’13)
where ,82 is the eigenvalue. The largest eigenvalue corresponds

to the phase constant of the dominant mode at a specified

wavenumber k..

IV. APPLICATION TO AXISYMMETRIC GEOMETRIES

In applications which involve longitudinally-magnetized

ferrites, circular waveguides are often used. The fundamental

geometry is concentric ferrite rods and cylinders in a cir-

cular waveguide. This structure has been the subject of a

detailed analysis by Waldron [2] and others and its propagation

characteristics are well understood. Results for two cases are

presented here: the fully-filled case where the radius of the rod

b is equal to the radius of the guide a: the partially-filled case

where O < b/a < 1.In each case the rod has a permeability

of the form in (l).

The circular geometry of the structure was modelled using

a few convariant-projection elements. Covariant-projection

elements are rectangular elements which have a specially

designed function space associated with them which prevents

the occurrence of spurious mode as described by Crowley

et al. [8]. These quadratic elements have curvilinear sides

so that geometries with curved sides can be modelled easily

[14]. In addition the vector shape functions associated with

the elements are setup using locally-defined axes. At each

node the local axes is defined parallel to the edges of the

element. Unlike standard finite elements where all the field

components are continuous between elements, only the com-

ponents tangential to the element edges are made continuous in

covariant-projection elements. These elements are well-suited

to geometries with material interfaces where both c, and W.

are discontinuous.

The boundary of the circular waveguide is assumed to

be a perfect electric conductor. Thus the required boundary

condition is tangential E equal to zero: this boundary condition

is the natural one of the formulation in (3). At the waveguide

boundary r = a, the line integral term (3) becomes an

azimuthal (0) integral

= jwq) !‘m{~X ?P}l.=. d9 = O (14)
o

for a perfect conductor.

The axisymmetric geometry of the structure can be used to

define planes of symmetry in the field variables. Using these

planes of symmetry, the size of the mesh needed is reduced.

For any mode, the boundary condition which can be used along

a particular azimuthal plane, is identified by examining the

tangential magnetic field components along that plane, in this

case these will be H, and Hz. In this geometry the modes of

interest are hybrid HE+l,I and EHO,l modes. In the case of

the latter, there is no variation in the azimuthal direction. For

the HEH,1 mode, both the axial electric and magnetic field

components have unity variation in the azimuthal direction

and are orthogonal to each other [2]. Note that hybrid mode

nomenclature (HE, EH) has been adopted here rather than

the limit transverse mode (TE, TM) nomenclature.

With zero magnetization K = O, the tensor permeability is

diagonal. From Maxwell’s equations, the radial magnetic field

component (H. ) is a function of the radial derivative of the

axial magnetic field (i3H2 /6%) and the azimuthal derivative of

the axial electric field (~llz /86) only. The standard Dirichlet

and Neumann boundary condition [13] can be used to reduce

the mesh to half, quarter or even smaller sections of the wave-

guide depending upon the mode of interest, Since the magnetic

field variable is used in the formulation here a homogeneous

Dirichlet boundary conditions corresponds to a magnetic wall

and a homogeneous Neumann condition to an electric wall,

Hence a homogeneous Neumann boundary condition specified

along 6 = O and 0 = T with a half waveguide mesh gives

the EHO, 1 mode and one polarization of the HEil, 1 mode.

The other polarization of the HE~l,l mode is obtained by

specifying the homogeneous Dirichlet boundary conditions on
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Fig. 1. (a) Antisymmetric magnetic field dktribntion through a plane of sym-
metry in an axisymmetric geometry. (b) Symmetric magnetic field dktribution
through a plane of symmetry in an axisymmetric geometry.

the same half waveguide mesh. These boundary conditions are

identical to those used in axisymmetric geometries with scalar

media.

When the direct magnetic field is applied H # Othe Dirichlet

and Neumann boundary conditions can no longer be employed

because of the more complicated coupling between the field

components introduced by the tensor ,LV. From Waldron’s

analysis the radial magnetic field H. is a function of the

radial and azimuthal derivatives of both axial field components

E= and Hz. It is still possible to use the symmetry in the

field components to reduce the mesh if periodic boundary

conditions are used. For example both polarizations of the

H,?3+1,1 mode satisfy

HJr, O)={; Hz(r,7r) O<r~a
T=o

This variation is imposed by specifying an anti-symmetric

periodic boundary condition on a half waveguide mesh. For

the case of the EHO, 1 mode the field components satisfy

Hr(?-,7r) O<?-<a
H.(r,o) = {0 7-=0

(16)

This mode is obtained by imposing a symmetric periodic

boundary condition on a half waveguide mesh. The field

variation associated with (15) and (16) are schematically illus-

trated in Fig. l(a) and (b), respectively. The periodic boundary

conditions are included in the analysis by constraining the

pairs of field variables along the plane of symmetry in the

matrix equation. In each case the symmetry of the matrix is

not affected. Standard matrix solution subroutines from the

NAG library are used to solve the matrix equation in both (6)

and (13).

35,
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~
0.9 1
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Fig. 2. Analytic (—) and finite element (*) cut-off calculations for the
first three modes in axially magnetized ferrite filled circular waveguide.
[L& = P,. = # JLzz = 1].
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Fig. 3. Analytic (—) and finite element (*) phase constants for the
first two modes in axially magnetized ferrite filled cucular waveguide.
[.k~a = 0.750 ef = 15 p.z = #g, = p p.. = 1].

V. CUT-OFF AND PHASE CONSTANT CALCULATIONS

Equations (6) and (13) can be used to examine the cut-off

and propagating planes of axially magnetized ferrite waveg-

uides with arbitrary cross-sections. In order to verify these

formulations with analytic solutions in the literature, ax-

isymmetric fully-filled and partially-filled circular waveguides

have been studied. This further permitted the use of periodic

boundary conditions outlined in (15) and (16). All finite

element calculations depicted in Figs. 2–5 are compared with

published analytical results.

The characteristic equations for the cut-off and propagating

planes of fully-filled circular waveguides are well understood

[2] and rules of modal hierarchy and nomenclature have

previously been enunciated [4]. Calculations at cut-off for the

first three modes ht a filled waveguide are illustrated in Fig.

2. A mesh of 8 elements modelling half the waveguide was

used to obtain these results. Although the dominant HE~l, 1
mode is independent of magnetization, the first higher order

mode (EHO, 1) has a cut-off number which increases with

(~/p). Phase constant calculations are depicted in Fig. 3 at

a frequency where both the EHO, 1 and HEk 1,1 modes are
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Fig. 4. Analytic (—) and finite element (*) cut-off calculatiotr for the
HE+ 1,1 and EHo, I modes in part filled, axially magnetized circular wave-

element formulation for inhomogeneous geometries. Fig. 5

illustrates the phase constants as a fimction of b/a for the

dominant iYl&l,l mode for two values of ~/p.

VI. CONCLUSIONS

A three component, vector, finite element formulation which

uses covariant-projection elements and avoids spurious modes

has been described for axially magnetized ferrite waveguides.

In the axisymmetric geometries treated periodic boundary con-

ditions were introduced to improve numerical efficiency. Both

cut-off planes and phase constant finite element calculations

have been presented and are in good agreement with published

analytical results. The formulation discussed may also be

applied to longitudinally magnetized plasma waveguides,

guide for two values of (w/K)[p~~ = VV9 = P LLZZ = I]
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