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Cut-off and Phase Constants of Partially
Filled Axially Magnetized, Gyromagnetic
Waveguides Using Finite Elements

Bermice M. Dillon, Andrew A. P. Gibson, and Jon P. Webb

Abstract—A three component vector finite element formulation
to model the propagation characteristics of partially filled, axially
magnetized, gyromagnetic waveguides is described. Covariant-
projection elements have been used to avoid spurious modes and
periodic boundary conditions have been implemented to improve
numerical efficiency. The classic quadratic functional derived
from the vector, curicurl, magnetic field equation is suited to
evaluating the cut-off planes of gyrotropic waveguides. A known
field transformation is used to reformulate the functional into
a form convenient for calculating phase constants, Cut-off and
phase constant solutions are presented for both fully and partially
filled, longitudinally magnetized, ferrite loaded waveguides.

I. INTRODUCTION

N UNDERSTANDING of cut-off conditions, phase con-
stants and mode nomenclature are necessary in wave-
guide design problems. Boundary value problems associ-
ated with gyromagnetic waveguides often produce intractable
characteristic equations describing complex modal behaviour
[1]-[4]. An alternative approach is to formulate such problems
in terms of a finite element procedure [5]-[7]. Inhomogeneous
gyromagnetic waveguide cross sections are solved here using
the finite element method with covariant-projection elements
to eliminate spurious modes [8], [14]. The particular case
treated is longitudinally magnetized ferrite structures. This
class of boundary problem is of interest in the area of ferrite
phase shifters, resonators, circulators and tunable filters [9].
The finite element analysis of a vector field problem is
usually based on either an axial (F,, H,) formulation or on
a three component (E or H) field formulation. Gibson and
Helszajn [6] have used an axial component formulation to
study the characteristics of ferrite filled elliptical waveguides.
One difficulty with axial component formulations is that
for inhomogeneous geometries it is not easy to impose the
boundary conditions between media interfaces [10]. The three
component field formulation requires no modification for
media interfaces and so can be applied to arbitrary inhomo-
geneous geometries. Such a formulation was first proposed
by Konrad [5] and since then it has been widely used. Its
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eigensolution provides the three component vector field as the
eigenvector for each modal eigenvalue frequency. Recently,
this formulation has been used with edge elements to avoid
spurious modes in the study of ferrite cavities [11]. By setting
the phase constant to zero the cut-off planes of gyromagnetic
structures are readily evaluated. Cut-off curves are presented
for the first few modes of longitudinally magnetized, circular
waveguides using this approach. Both fully and partially filled
cross sections are examined. For phase constant evaluation
however this approach is inefficient as the phase constant is a
prerequisite to the analysis.

A direct method of calculating phase constants from this
functional has been described in the literature [12]. It requires
the fields to be transformed such that the phase constant
squared becomes the eigenvalue. The Hermitian tensors of the
medium must be reducible into transverse and axial compo-
nents. Longitudinally magnetized structures satisfy this prereq-
uisite. Spurious mode free eigensolutions of phase constants
and fields are obtained by using this transformed functional
with covariant-projection elements. Finite element phase con-
stant calculations are made for both partially and completely
filled longitudinally magnetized circular ferrite waveguides.
All finite element calculations are in good agreement with
previously published results [2].

The circular geometries treated here are modelled using
covariant-projection elements. These are rectangular elements
with curvilinear sides, which have a special function space de-
signed to avoid spurious modes [8], [14]. The shape functions
used within these elements are defined so that the irrotational
solutions are modelled correctly. Numerical efficiency has
been improved for the axisymmetric geometries treated by
introducing periodic boundary conditions and discretizing one
half of the geometry only.

II. FORMULATION FOR THE CUT-OFF PLANE

In longitudinally-magnetized ferrite structures, the static
magnetic field is applied in the direction of electromagnetic
wave propagation. In the following analysis this coincides
with the z-axis of the Cartesian co-ordinate system. The
propagation characteristics of the waveguide are dependent
on the applied magnetic field; for example, electromagnetic
waves with clockwise and anti-clockwise circular-polarization
display different phase velocities along the waveguide. Hence
the ferrite media is gyromagnetic and can be characterized by
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a scalar relative permittivity (e¢) and a tensor permeability
(i) of the form

Hex —JK 0
B=poftr = po | JE  Hyy 0 ey
0 0 Hzz

From Maxwell’s equations it can be shown that the modes
in axially magnetized gyromagnetic media always contain
coupled E, and H, field components [2] and so a vector
analysis is necessary.

The time-harmonic magnetic field within the waveguide
satisfies the vector wave equation

V x (¢;'V x H) - kgjie H =0 2)

where kg is the wavenumber of free space. It is assumed here
that the waveguide is uniform in the z direction, hence all
field components have a z-dependence of e~7* where v is
the propagation constant. In waveguides containing ferrite the
cross-section of the guide may be inhomogeneous with both ¢
and [, functions of position. The functional whose stationary
point corresponds to the solution of (2) is

pﬁnzﬁwxﬁfgwxﬁ_%ﬁfmﬁ}
-ds-/c{’H‘* x UV X} -AdC ()

where 7 is the outward normal around the closed curve C
surrounding the waveguide region S. This functional was
derived by Konrad [5] for applications with anisotropic media
which can be described by Hermitian tensors. Regardless of
the direction of the applied field, the gyrotropic media of (1)
always falls into this category. The waveguide boundary is
usually either an electric or a magnetic wall or a combination
of both. With any of these boundary conditions the contribu-
tion of the line integral term in (3) around the waveguide
boundary C is zero, so this term is often ignored in the
formulation.

For two-dimensional problems the known z-dependence of
the fields is substituted into (3), hence there are two un-
known parameters associated with each mode: the propagation
constant ¥ = jG and the free-space wavenumber kg. In
this formulation the value of (3 is specified in preference
to the wavenumber kg so that a standard eigenvalue matrix
equation is obtained. The usual finite element procedure of
approximating the field using a set of locally defined shape
functions and a set of unknown field coefficients can be used to
discretize the functional in (3), [13]. Ignoring the line integral
term in (3) and using (1), the discretized functional gives the
following matrix equation

P = - ttz) 4]
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where the submatrices are defined as
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Here the known z-dependence of the field has been used to
give Vx = V; x —jf% and the relative phase difference
between the transverse (H) and axial (H,) magnetic field
coefficients is chosen so that the matrix [A] is real symmetric.
For ferrites the matrix [B] is Hermitian because of the tensor
properties of fi.. The solution is obtained by finding the
stationary point of the functional. This corresponds to solving
the generalized eigenvalue matrix equation

[mt&ﬂ[m}_ﬁﬁu OHHﬂ ©
AL A ||jH.| " 0 B..||jH.

By setting the phase constant () to zero this formulation
becomes ideally suited to evaluating the cut-off planes of
gyromagnetic waveguides. The eigenvalue with the lowest
value corresponds to the cut-off wavenumber of the dominant
mode. The solutions with a cut-off wavenumber of zero were
ignored. These solutions correspond to the irrotational fields

which are numerical solutions to (6). All eigensolutions with
non-zero eigenvalues represent physical modal solutions.

III. FORMULATION FOR THE PHASE CONSTANT

In order to study the dependence of the phase constant 5 of
any particular mode on the direct magnetic field, it is necessary
to have a fomulation where the wavenumber k, is specified
and the phase constant is caiculated. A simple method for
transforming the functional has been described by Cendes and
Lee [12]. Their application involved lossless scalar material
properties. It can also be used with tensors of the form of (1)
which can be split into a transverse and axial part

ﬂr = ﬂtt + .u’zzé @)

Assuming that VX =V, x —j82% and splitting the magnetic
field into a transverse and an axial part as before, the functional
in (3) becomes

F(F) = L{E;llvt X Ftlz — kg[ﬁ: . ﬁttﬁt + H:/,LZZHZ]
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Once more the line integral term is taken to be zero because of
the boundary conditions. To obtain a formulation in terms of
the phase constant, the field variables can be transformed using

H, =pH; (9a)
H,2=7H,3 (9b)

The resulting functional is
) = [(! 19 X Ul = 7 - T,
+ B%le; IViH, + Hel® — kg pzzM]} dS(10)

The advantage of this functional is that it gives a generalized
eigenvalue matrix problem with the phase constant as the
eigenvalue instead of the wavenumber as was used in (3).
The discretization of (10) gives a matrix equation
T\ — * _AI* Ctt 0 Ht
ran =t -G o]
th
DZZ

Dtt

w oy i | P

H,
|l

where on expansion the following products are defined

H;CyuH, = /{e?llvt x Hy|? — k2H, - My H;} dS (12a)
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H!D. H, = / €7 H, -V, H, dS (12¢)
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As in (4), the vector [H, jH,] represents the unknown
magnetic field coefficients. The matrices [C] and [D] are
Hermitian and real symmetric respectively. The stationary
point of this matrix equation gives

D tz:} [ Ht
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where 3 is the eigenvalue. The largest eigenvalue corresponds
to the phase constant of the dominant mode at a specified
wavenumber kg.

IV. APPLICATION TO AXISYMMETRIC GEOMETRIES

In applications which involve longitudinally-magnetized
ferrites, circular waveguides are often used. The fundamental
geometry is concentric ferrite rods and cylinders in a cir-
cular waveguide. This structure has been the subject of a
detailed analysis by Waldron [2] and others and its propagation
characteristics are well understood. Results for two cases are
presented here: the fully-filled case where the radius of the rod
b is equal to the radius of the guide a: the partially-filled case
where 0 < b/a < 1. In each case the rod has a permeability
of the form in (1). :

The circular geometry of the structure was modelled using
a few convariant-projection elements. Covariant-projection
clements are rectangular elements which have a specially

designed function space associated with them which prevents
the occurrence of spurious mode as described by Crowley
et al. [8]. These quadratic elements have curvilinear sides
so that geometries with curved sides can be modelled easily
[14]. In addition the vector shape functions associated with
the elements are setup using locally-defined axes. At each
node the local axes is defined parallel to the edges of the
element. Unlike standard finite elements where all the field
components are continuous between elements, only the com-
ponents tangential to the element edges are made continuous in
covariant-projection elements. These elements are well-suited
to geometries with material interfaces where both ¢, and p,
are discontinuous.

The boundary of the circular waveguide is assumed to
be a perfect electric conductor. Thus the required boundary
condition is tangential F equal to zero: this boundary condition
is the natural one of the formulation in (3). At the waveguide
boundary r = a, the line integral term (3) becomes an
azimuthal (#) integral

/{ﬁ xer(Vx H)}-ndl
c
2
= jweg {H X E} - #|p=q df
0
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= jweg / {Ex #H}|,=adf =0 (14
0

for a perfect conductor.

The axisymmetric geometry of the structure can be used to
define planes of symmetry in the field variables. Using these
planes of symmetry, the size of the mesh needed is reduced.
For any mode, the boundary condition which can be used along
a particular azimuthal plane, is identified by examining the
tangential magnetic field components along that plane, in this
case these will be H, and H. In this geometry the modes of
interest are hybrid H Ey; 1 and EHp 1 modes. In the case of
the latter, there is no variation in the azimuthal direction. For
the H E+1 1 mode, both the axial electric and magnetic field
components have unity variation in the azimuthal direction
and are orthogonal to each other [2]. Note that hybrid mode
nomenclature (HE, EH) has been adopted here rather than
the limit transverse mode (T'F,TM) nomenclature.

With zero magnetization £ = 0, the tensor permeability is
diagonal. From Maxwell’s equations, the radial magnetic field
component (H,) is a function of the radial derivative of the
axial magnetic field (9H,/Or) and the azimuthal derivative of
the axial electric field (OE,/d6) only. The standard Dirichlet
and Neumann boundary condition [13] can be used to reduce
the mesh to half, quarter or even smaller sections of the wave-
guide depending upon the mode of interest. Since the magnetic
field variable is used in the formulation here a homogeneous
Dirichlet boundary conditions corresponds to a magnetic wall
and a homogeneous Neumann condition to an electric wall,
Hence a homogeneous Neumann boundary condition specified
along § = 0 and § = 7 with a half waveguide mesh gives
the EHp, mode and one polarization of the HE;; mode.
The other polarization of the HFE1;; mode is obtained by
specifying the homogeneous Dirichlet boundary conditions on
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Fig. 1. (a) Antisymmetric magnetic field distribution through a plane of sym-
metry in an axisymmetric geometry. (b) Symmetric magnetic field distribution
through a plane of symmetry in an axisymmetric geometry.

the same half waveguide mesh. These boundary conditions are
identical to those used in axisymmetric geometries with scalar
media.

When the direct magnetic field is applied x # 0 the Dirichlet
and Neumann boundary conditions can no longer be employed
because of the more complicated coupling between the field
components introduced by the tensor [i.. From Waldron’s
analysis the radial magnetic field H, is a function of the
radial and azimuthal derivatives of both axial field components
E, and H,. It is still possible to use the symmetry in the
field components to reduce the mesh if periodic boundary
conditions are used. For example both polarizations of the
HFE,11: mode satisfy

0 = { 7Hrm) 0<7 <0

H.(r,0)= —H.(r,m) 0<r<a (15)

This variation is imposed by specifying an anti-symmetric
periodic boundary condition on a half waveguide mesh. For
the case of the F"Hy ; mode the field components satisfy

H.(r,0)=H.(r.m) 0<r<a

H,(r,0) :{Hr(r,w) 0<r<a

0 r=20

This mode is obtained by imposing a symmetric periodic
boundary condition on a half waveguide mesh. The field
variation associated with (15) and (16) are schematically illus-
trated in Fig. 1(a) and (b), respectively. The periodic boundary
conditions are included in the analysis by constraining the
pairs of field variables along the plane of symmetry in the
matrix equation. In each case the symmetry of the matrix is
not affected. Standard matrix solution subroutines from the
NAG library are used to solve the matrix equation in both (6)
and (13).

(16)
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Fig. 2. Analytic (—) and finite element (*) cut-off calculations for the
first three modes in axially magnetized ferrite filled circular waveguide.
[ze = byy = 4 422 = 1.
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Fig. 3. Analytic (—) and finite element (*) phase constants for the
first two modes in axially magnetized ferrite filled circular waveguide.
[koa = 0.750 €5 =15 ez = pyy = p fzz = 1.

V. CUT-OFF AND PHASE CONSTANT CALCULATIONS

Equations (6) and (13) can be used to examine the cut-off
and propagating planes of axially magnetized ferrite waveg-
uides with arbitrary cross-sections. In order to verify these
formulations with analytic solutions in the literature, ax-
isymmetric fully-filled and partially-filled circular waveguides
have been studied. This further permitted the use of periodic
boundary conditions outlined in (15) and (16). All finite
clement. calculations depicted in Figs. 2-5 are compared with
published analytical results.

The characteristic equations for the cut-off and propagating
planes of fully-filled circular waveguides are well understood
[2] and rules of modal hierarchy and nomenclature have
previously been enunciated [4]. Calculations at cut-off for the
first three modes in a filled waveguide are illustrated in Fig.
2. A mesh of 8 elements modelling half the waveguide was
used to obtain these results. Although the dominant HE 1 1
mode is independent of magnetization, the first higher order
mode (EHj 1) has a cut-off number which increases with
(k/u). Phase constant calculations are depicted in Fig. 3 at
a frequency where both the EHy1 and H E4t11 modes are
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Fig. 4. Analytic (—) and finite element (*) cut-off calculation for the
HFE41,1 and EHg, 1 modes in part filled, axially magnetized circular wave-
guide for two values of (k/p){pter = pyy = 4 g2z = 1.
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Fig. 5. Waldron’s [2] analytic results (—) and finite element (*) phase con-

stant calculations for the dominant mode in axiaily magnetized partially filled
circular waveguide. [kpa = 2.5133 €5 =10 figy = flyy = fzz =1
/i = 0,0.75)).

above cut-off in the unmagnetized fully-filled waveguide. The
EHy; mode cuts-off at the appropriate value of (x/u) as
predicted with the cut-off plane intersection. Good agreement
between numerical and analytical phase constant calculations
is shown.

In accordance with the fully-filled waveguide the cut-off
numbers of the dominant HE.; ; mode in the partially filled
waveguide are invariant with magnetization (/) whereas the
EHy,; mode displays cut-off numbers which are dependent
on (x/p). Analytic and finite element results for the cut-
off plane of the partialty-filled case for both these modes
are illustrated in Fig. 4 for two values of (x/u). Half the
waveguide structure was modelled using 12 finite elements.
In developing the analytic results Clarricoats’ form of the
characteristic equation has been used [3]. Note that the modal
hierarchy in the inhomogeneous waveguide is dependent on
the applied field and the relative rod radius (b/a). For the
-case illustrated in figure 4 the circularly symmetric EH
mode becomes the dominant one over the approximate range
(0.15 < b/a < 0.85). In the propagating plane Waldron’s
results have been used to confirm the accuracy of the finite

element formulation for inhomogeneous geometries. Fig. 5
illustrates the phdse constants as a function of b/a for the
dominant HE.1 1 mode for two values of k/p.

V1. CONCLUSIONS

A three component, vector, finite element formulation which
uses covariant-projection elements and avoids spurious modes
has been described for axially magnetized ferrite waveguides.
In the axisymmetric geometries treated periodic boundary con-
ditions were introduced to improve numerical efficiency. Both
cut-off planes and phase constant finite element calculations
have been presented and are in good agreement with published
analytical results. The formulation discussed may also be
applied to longitudinally magnetized plasma waveguides.
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